次世代自動車地域産学官フォーラム 革新的セラミック電池材料の研究開発 2011年10月5日

空気二次電池等革新電池技術の開発

三重大学大学院工学研究科

<u>今西誠之</u>、張涛、大熊広和、 山本治、武田保雄

Outline

1. 序論:水溶液系リチウム空気電池の特徴

2. セラミックス保護被膜の課題について

①耐水化学的安定性

2耐還元安定性

- 3. ペロブスカイト酸化物触媒の開発
- 4. 総括

水溶液系リチウム空気電池の特徴

 $O_2 + 4Li + 6H_2O = 4(LiOH - H_2O)$

重量エネルギー密度(セル電圧 3.45Vとして) フル放電時: 2204Wh kg⁻¹ フル充電時: 2727 Whkg⁻¹ 平均: 2466 Wh kg⁻¹(LIBの5倍以上)

・放充電で酸素が入出する

水酸化リチウムの溶解度 無水物 12.5 (25℃) 飽和時のpH=14.7

・放電に伴い強塩基性となる

・水酸化リチウムが析出する

セル構成部材の紹介

固体電解質の候補材料

PEO-LiTFSI ドライポリマー

Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃ [NASICON型]

Li₇La₃Zr₂O₁₂ [Garnet型]

	導電率(S cm ⁻¹)	E _a (eV)	還元電位(vs.Li)
LLT	1 × 10 ⁻³ (bulk)	0.30~0.32	1.7
LATP	1 × 10 ⁻⁴	0.3	2.5
LLZ	2×10 ⁻⁴	0.3	Liに安定
PEO-LiTFSI	3×10 ⁻⁴ (60°C)	0.4(60°C)	Liに安定

リチウム空気電池各部材の課題

Outline

1. 序論:水溶液系リチウム空気電池の特徴

2. セラミックス保護被膜の課題について ①耐水化学的安定性

②耐還元安定性

3. ペロブスカイト酸化物触媒の開発

4. 総括

①LTAPの耐水化学的安定性

蒸留水およびリチウム正塩の水溶液

・リチウムを含む化合物はたいてい水中で分解 ・LTAPは蒸留水中でも長期間安定

pHの影響ー形状変化

pHの影響ー導電率変化

Li⁺イオン存在下かつpHが中性域の溶液に対して安定である

しかし、リチウム-空気電池は放電と共にpH=15の強塩基性になる

緩衝溶液の電解液としての適用

LTAPの各種溶液への浸漬実験

浸漬した溶液(50℃)	イオン伝導率σ _{25℃} /Scm⁻¹
浸漬前	1.00×10 ⁻⁴
HCI 0.1M (3weeks)	0.03×10 ⁻⁴
HAc100% (3weeks)	0.26×10 ⁻⁴
HOAc 100vol% + sat.LiOAc	2.51 × 10 ⁻⁴

電解液として使用可能

中和でなく解離平衡への干渉による改善

LTAP の安定性試験;LiOH(1 M)+LiCl 飽和(19 M)電解液

導電率に変化なし

過剰量のLiCl添加はLATPのLiOH水溶液中での分解を抑制する

LTAP の安定領域 – pHと添加するLiClの量の影響

浸漬期間; 3 週間

рН	導電率♂ _{25℃} /Scm⁻¹	
浸漬前	3.46×10 ⁻⁴	
9.36	2.51×10 ⁻⁴	
9.75	1.91×10 ⁻⁴	
10.72	1.18×10 ⁻⁴	
12.01	0.53×10 ⁻⁴	

LTAPはpHが10以下で安定

LTAPの安定領域

LiCI > 8M

pH < 10

LiOH (M)	LiCI (M)	pН	
5 (sat.)	1	11.73	
	3	11.37	
	5	10.72	
	8	9.96	
	10	9.36	
	15	8.55	
	19 (sat.)	8.14	

飽和LiCI水溶液を用いた場合のセルの分極

負極: Li/PEO₁₈LiTFSI-10 wt% Al₂O₃/LTAP 正極: Pt, air 電解質: 飽和 LiCI または 飽和 LiCI + 飽和 LiOH

電圧は3Vまで低下するが、分極の程度は同じ。 LiOH由来の問題を解決可能。

②LTAPの耐還元安定性

緩衝層有無によるLTAPの化学的安定性の差

Re Z / Ω

ガーネット型構造のリチウムイオン導電体

⊠ 1 Crystal structure of ideal garnet-type with structural formula $\{C_3\}[A_2](D_3)O_{12}$. The C (Wyckoff notation: 24c), A (16a), and D (24d) sites are the cation sites, which are surrounded by oxygen atoms in dodecahedral, octahedral, and tetrahedral coordinations, respectively. The structure images were drawn by VESTA ⁵⁾.

⊠ 3 Crystal structure of cubic garnet-related type $Li_7La_3Zr_2O_{12}$ ³⁰⁾. Li1 and Li2 atoms are located at the tetrahedral and distorted octahedral sites, respectively, in the interstices of garnet-type framework structure.

立方晶Li₇La₃Zr₂O₁₂の 結晶構造

 \boxtimes 5 Li-ion conduction pathway in cubic $Li_7La_3Zr_2O_{12}$. Three-dimensional network is formed by the basic unit of loop.

立方晶Li₇La₃Zr₂O₁₂の Liイオン導電パス

秋本、阿波加「次世代型蓄電池のためのリチウムイオン伝導体の開発」 マテリアルインテ グレーション、Vol.25, No.3, p1-7(2011)から引用

garnet型酸化物イオン導電体Li7La3Zr2O12(LLZ)の開発

 LLZの過去の研究まとめ
 正方晶
 低温立方晶
 高温立方晶

 相の同定、導電性の違いなど不明な点が多い
 イオン伝導率 の25℃(Scm⁻¹)
 約 2×10⁻⁷
 約 6×10⁻⁷
 約 2×10⁻⁴

> リチウムの高温揮発を抑えるなど合成法を工夫し、組成 を制御して、試料の合成と分析を行った。

仕込組成比	Li _{8.05} La ₃ Zr ₂ O _{12.525} (c-LLZ-8)	Li ₇ La ₃ Zr ₂ O ₁₂ (c-LLZ-7)	Li _{7.7} La ₃ Zr ₂ O _{12.35} (t-LLZ-8)	Li ₇ La ₃ Zr ₂ O ₁₂ (t-LLZ-7)
アニール温度 (°C)	1180	1180	800	800
結晶系	Cubic	Cubic	Tetragonal	Tetragonal
Li 分析組成	5.96	6.0	7.5	7.0
La 分析組成	3.23	3.1	3.1	3.1
Zr 分析組成	2.00	2.0	2.0	2.0
AI 分析組成	0.23	-	-	-
	<	,		

高温立方晶の組成:Li₆La₃Zr₂O_{11.5} 低温正方晶の組成:Li₇La₃Zr₂O₁₂

(低温立方晶の組成:Li₇La₃Zr₂O_{11.5}(CO₃)_{0.5})

水溶液との安定性(1)

LLZはLiとLaを含む酸化物なので固体塩基である。リチウムイオン導電体が種々のpHの溶液に対し、どの程度安定なのかは重要な問題である。固体塩基ならば、酸性水溶液では不安定であろうし、Liとプロトンとの交換反応も起こりうる。そのような観点から、種々の水溶液との安定性について検討した。

各種水溶液に浸漬後のLLZのX線回折パターン:XRDの観測内では大きな変化はない

水溶液との安定性(2)

c-LLZ焼結体を50℃、1週間、各種水溶液に焼結体を保持した後のSEM写真:(a)未 処理、(b)飽和LiCl水溶液、(c) 0.1 M HCl水溶液、(d) 1 M LiOH 水溶液。

LiCl飽和水溶液では大きな変化は見られないが、0.1 M HCl水溶液や1 M LiOH水溶 液ではその組織上に際だった変化が見られる。予想どおり、c-LLZはある濃度以上の アルカリや酸には不安定であることが分かる。

水溶液との安定性(3)

(a)LiCl飽和水溶液の場合、
 粒内の抵抗も、粒界の抵抗
 も特に変化を示していない。
 (b)(c) 0.1 M HCl水溶液の
 場合もH₂Oの場合もバルクの導電率に関しては、あまり
 大きな変化はない。粒界抵抗が大きくなっている。

(d)1 M LiOHに浸漬後のc-LLZ-8のバルク導電率は 5.8×10⁻⁴ S cm⁻¹(25℃)で、 ほぼ処理前と同じであるが 粒界導電率が7.9×10⁻⁵ S cm⁻¹と小さくなっている。

粒界の不純物のコントロー ルで広いpH領域で安定な LLZの焼結体を得ることが 出来るかも知れない。

 (c) 0.1 M HCI水溶液
 (d) 1 M LiOH 水溶液
 c-LLZ焼結体を50℃、1週間、各種水溶液に焼結体を保 持した前後の交流インピーダンス図(25℃)

LLZのリチウム金属に対する安定性

Li/LLZ/Liの対称セルを作製、交流インピーダンス測定により抵抗値の経時変化を調べる

長期間リチウムと接触してもLLZの抵抗および界面抵抗に変化はなく、LLZは安定であるということが確認できた。それに対してLTAPではリチウムとの十数時間の接触において抵抗値が2倍程度増大している。LTAP:Li_{1.55}Ti_{1.75}Al_{0.25}P_{2.7}Si_{0.3}O₁₂

Outline

序論:水溶液系リチウム空気電池の特徴
 セラミックス保護被膜の課題について
 ①耐水化学的安定性

2耐還元安定性

3. ペロブスカイト酸化物触媒の開発

4. 総括

空気極評価用セルと電解液の選定

【エアフローUFO型セル】

ガス拡散層(GDL) 反応層(RL) (Carbon + Catalyst + Binder) セパレータ 対極(PtB)

【電解液の選定】

- ・充放電中における電解液のpH安定性
- Li保護層La_{1+x+y}Ti_{2-x}Al_xP_{3-y}Si_yO₁₂(LTAP)は中性 ~弱アルカリ性水溶液で安定

高濃度のLi塩を含む飽和LiOH電解液

(LiOHの解離を抑制→pH緩衝溶液)

ペロブスカイト酸化物(LCCF, LSFM)の合成

ペロブスカイト酸化物触媒を用いた空気極

 $\begin{bmatrix} La_{0.6}Ca_{0.4}Co_{0.8}Fe_{0.2}O_{3} \\ (LCCF) \\ La_{0.8}Sr_{0.2}Fe_{0.8}Mn_{0.2}O_{3} \\ (LSFM) \\ La_{0.8}Sr_{0.2}Fe_{0.8}Co_{0.2}O_{3} \\ (LSCF) \end{bmatrix}$ $\begin{bmatrix} GDI \\ \hline \\ - no \ catalyst \ - LCCF \\ - LSFM \ - LSCF \end{bmatrix}$

[cell] GDL / RL / 10 M LiCl + sat.LiOH / PtB RE : Hg/HgO

[CL] KB /catalyst /PTFE = 55 /30 /15 (mass%)
thickness : 0.3 mm

[GDL] CP

より高い電流密度における分極特性

拡散速度を高める工夫ないしは、三相界面(電極反応面 積)の増大=電流密度の低下を達成しなければならない。 1. LTAPの水溶液に対する安定性は、pH<10で達成される。 あらかじめLiCIを8M以上溶解させておくことで、飽和LiOHの 状態でも安定性が維持された。

2. LLZの合成を行い、10⁻⁴ Scm⁻¹の総合導電率を得た。また、 組成と相の関係を明らかにした。LLZは金属リチウムと直接接 触させても劣化しなかったが、水溶液に対しては中性でのみ 安定であった。

3. ペロブスカイトの酸素レドックスに対する触媒能の存在を 確認した。より大きな電流密度に耐えるような、電極構造の提 案が必要である。